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Abstract

For some behavioral biometrics, only the timestamps of
a recurring event may be available. This is the case for
the recently proposed random time interval (RTI) biomet-
ric in which a user repeatedly presses a single button. A
dynamical systems approach is taken to deal with biomet-
rics which are inherently one-dimensional. The methodol-
ogy uses the minimum description length principle to find
the optimal time delay embedding for a time series and an
optimization to the multivariate Wald-Wolfowitz test for ef-
ficiently comparing time series of different lengths. Promis-
ing classification and authentication results are achieved
on several experimental datasets, utilizing event timestamps
only. Classification accuracy ranged from 16.2% to 44.1%
and authentication EER from 32.8% to 12.7%. The pro-
posed methodology was also used to achieve first place in
the 2014 EMVIC, with 39.6% classification accuracy. All
code is made available for experiment reproducibility1.

1. Introduction

Behavioral biometrics may be placed into two different
categories: active, passive. An active behavioral biomet-
ric is one that requires a user to interact with a system,
such as keystroke, mouse, and touchscreen. Thus, many
active behavioral biometrics are commonly associated with
computer interaction since a computer requires human op-
eration. A passive behavioral biometric is one that can be
observed without system interaction. Examples of passive
behavioral biometrics are gait and voice. This paper is pri-
marily concerned with active behavioral biometrics.

Various active behavioral biometrics induce different
cognitive loads depending on the complexity of the task in-
volved. In [14], Newell proposed the time scale of human
action. Adapted by [12], a logarithmic time scale is broken
up into four different categories, shown in Figure 1. The
categories each roughly encapsulate actions that belong to a
particular psychological theory.

1http://vmonaco.com/ijcb2014

Figure 1: Newell’s time scale of human action [14, 12]

Human actions may fall into one of four different cate-
gories based on the time scale of a recurring event. Gen-
erally, actions that occur higher up in the table are more
difficult to quantity and effectively classify [13]. The dif-
ficulty comes as a result of greater behavioral variability.
For example, the cognitive band enters consciousness where
humans are “in control” of the actions they make, whereas
there is little control over actions that take place in the bio-
logical band.

Traditional behavioral biometrics rely on the presence of
a rich stream of information to authenticate or identify an
individual. Normally, a behavioral biometric sample con-
sists of a sequence of events where each event occurs at
time t and may contain additional attributes. In the case of
keystroke biometrics, an event sequence would be a series
of keystrokes ordered by the key press time. Event attributes
include the name of the key that was pressed and the dura-
tion it was held down for.

It is the additional information contained in the attributes
of each event that allows researchers to define a rich set
of features on the event sequence. Events are normally
categorized according to their attributes. For example, in
keystroke biometrics events are commonly identified by the
name of the key that was pressed. Descriptive statistics can



then be taken on sets of event classes. Features such as the
mean duration of the “E” key, or variance of vowel key du-
rations, are typical in keystroke biometrics. Events with no
additional information cannot be categorized in this way,
thus the events themselves are indistinguishable. This is the
case for a one-dimensional time series that contains only
event timestamps. This work presents a methodology for
classifying and authenticating one-dimensional behavioral
biometrics.

The research contributions of this work are the follow-
ing:

1. A time and space optimization to the multivariate
Wald-Wolfowitz test, coined the approximate mul-
tivariate Wald-Wolfowitz test (AMWW), empirically
shown to yield acceptable results

2. Proposed methodology for classification and authenti-
cation of one-dimensional behavioral biometrics

3. A simple extension of the methodology for classifying
multivariate time series

4. Experimental classification and authentication results
on several publicly available datasets, including other
proposed sources of one-dimensional behavioral bio-
metrics.

The rest of the paper is organized as follows: Section 2
defines the RTI biometric and reviews work that has been
done. Section 3 uses Takens’ Theorem and several heuris-
tics to reconstruct system dynamics. The optimization to
the Wald-Wolfowitz test is covered in Section 4. Section 5
explains the classification and authentication methodology,
while experimental results and conclusions are presented in
Section 6 and Section 7, respectively.

2. Random-time interval biometric
Let an event et be some action taken by a user at time t.

An event could be a key press, mouse movement, or some
high level cognitive action. It may also carry additional in-
formation with it, such as the action that occurred (e.g. press
or release), the key name, or screen coordinates. However,
events from a one-dimensional (1-D) biometric do not con-
tain any of this information. At each event, only the time
the event occurred is known. A 1-D behavioral biometric
sample consists only of a time series of event timestamps,
[t1, t2, . . . , tn, tn+1] from events [et1 , et2 , . . . , etn , etn+1 ].
Commonly, the interval between timestamps is taken, to
give a series of random time intervals (RTI) of length n:

y = [t1 − t0, t2 − t1, . . . , tn+1 − tn]

An RTI biometric may be the result of a user repeatedly
performing a single action, such as pressing a key on a key-

board. It can also arise in situations where additional in-
formation, if any, cannot be obtained and only the event
timestamps are known. Such a scenario is encountered dur-
ing the observation of encrypted web traffic, anonymized
phone logs, or anonymized email message history.

With the introduction of the RTI biometric in 2009 [11],
there has not yet been extensive research on its applicabil-
ity. The author used the Wald-Wolfowitz (WW) test statistic
as a distance measure and reconstructed the samples in fea-
ture space with multidimensional scaling (MDS). The time
series were uniformly embedded with parameter selection
guided by the net class separability in feature space. With
an RTI dataset consisting of 40 users repeatedly pressing a
single key on a keyboard (hereafter this action referred to
as key-blow), who each supplied 10 samples of 127 time
intervals (or 128 key-blows), the EER of various classi-
fiers ranged from 19.80% to 5.40%. The best performance
was achieved by a minimum class support vector machine
(MCVSVM) trained on the optimized vectorial representa-
tions of the RTI signals.

Human-generated random number (HGRN) sequences
have also been studied. These could be thought of as an
RTI operating at a higher cognitive level, where the RTI
in [11] operates at the biological band of Newell’s Time
Scale. Though randomness and unexpected decisions play
an important role in psychology, there has not been much
research which considers HGRN as a biometric. In [17],
HGRN sequences were shown to be predictable, and it is
well known that many HGRN sequences lack true random-
ness. In [4], both the RTI and HGRN are considered as
behavioral biometrics. Data was collected from 30 partic-
ipants, who each provided 10 random number sequences.
The subjects were given an explanation of randomness us-
ing the “balls in a hat” model and then told to generate ran-
dom number sequences for a given duration. Wavelet de-
composition and approximate entropy were used as features
for a SVM classifier to achieve an equal error rate of 4.3%
on HGRN sequences. A comparative study on key-blow
RTI was performed with data collected from the same par-
ticipants. Again, 10 samples were provided by each partici-
pant, with each sample consisting 150 key presses (slightly
longer than [11]) to achieve an EER of 4.7%.

The multivariate Wald-Wolfowitz test [2] has been suc-
cessfully applied to the eye movement biometric. In [15],
the WW test is used to compare eye movement samples
where each sample is an 8-dimensional time series com-
posed of the velocity and acceleration of each eye in hori-
zontal and vertical directions. A k-nearest neighbor (kNN)
algorithm using the WW similarity as a distance measure
achieved good results, with an ACC1 (percentage of cor-
rectly classified samples) of 91.5% and 82% on two differ-
ent datasets.

A key-blow RTI dataset is used in the following sections



as an illustrative example of concepts defined. The dataset
is from the labeled portion of data made available by the
2014 RTI competition and is fully described in Section 6.

3. Takens’ Theorem
Given a series of observations, it is possible to recon-

struct the dynamics of the original system through time de-
lay embedding. This remarkable theorem is due to Florin
Takens [19]. A time delay embedded series is a transforma-
tion of the original time series y, such that

xi = [yi, yi−τ , yi−2τ , . . . , yi−(de−1)τ ]

The time lag is given by τ and the number of dimensions
by de. Takens’ embedding theorem states that the evolution
of xi will approach the evolution of the dynamical system
state given that de is large enough. In other words, assume
that only one variable of a multi-dimensional system can
be measured. The dynamics of the original system can be
reconstructed, up to a homomorphism, with observations
made on the single variable.

The theorem requires a few assumptions. The obser-
vation function must be at least twice differentiable, there
must be enough data, and the data sampled often enough
[18]. In practice, these assumptions will never be met due
to the discretized nature of any data on a computer. Despite
this, results of the theorem can still be observed on experi-
mental data [18].

3.1. Uniform time delay embedding

There are two key parameters in Takens’ time-delay
embedding procedure: the embedding dimension, de and
the time-lag, τ . The goal is to find xi such that X =
[xde×τ ,xde×τ+1, . . . ,xn] is a faithful representation of the
system dynamics. Here, X is the de × (n− de × τ) matrix
formed by the series of time delay embedded vectors. This
type of embedding is uniform since the time lags between
each dimension are equal. An irregular (or non-uniform)
embedding is one with a variable time lag. The estimation
of time lag and embedding dimension are described in the
following sections.

3.1.1 Time lag

The time lag is found first, using a heuristic which does not
depend on the embedding dimension. The value of τ will
determine the shape of the embedded time series. The time
lag should be chosen so that the data are separated as much
as possible in reconstructed phase space while still being
“close”. Ideally, the data should not be correlated too much
[1].

The mutual information (MI) of a time series is given
by (1) and can be used to estimate τ . Usually, the value of

Figure 2: Mutual information of the key-blow RTI dataset as the
time lag is increased

T would be chosen where the first local minimum of I(T )
occurs [1].

I(T ) =

N∑
n=1

P (yn, yn+T ) log2

P (yn, yn+T )

P (yn)P (yn+T )
(1)

The mean mutual information over all of the samples in
the key-blow RTI dataset is given in Figure 2. It can be seen
that there is no local minimum. Despite this, the MI can still
be used by choosing the value of T where I(T )/I(0) ≈ 1

5
[1]. In Figure 2, we have I(0) = 52 and I(1) = 5. Thus,
τ = 1 is chosen as the time lag, coming as close as possible
to the desired ratio. Note that this corresponds well to one
of the time lags found in [11] on a similar dataset, where a
functional measuring the net class separability is used as a
filter for choosing an embedding strategy.

3.1.2 Embedding dimension

A geometrical approach is used to estimate de. The method
of false nearest neighbors (FNN) [8] is a technique where
the embedding dimension is continually increased, and
changes in dynamics of the system in each higher dimen-
sion are observed. As the embedding dimension increases,
points which are actually close to each other in the dy-
namical system should separate slowly compared to points
which are not actually close and can only be distinguished
in higher dimensions.

The method of FNN proceeds as follows. Consider the
unordered vectors xi ∈ X as points in Rde . Each vector xi
has a closest neighbor, xNNi . Let the index of xNNi be iNN .
If xi and xNNi are actual nearest neighbors in the system of
dimension de, then the distance between them will increase
slowly as the embedding dimension is increased from de to
de + 1. The normalized increase in distance is given by (2).

R =
|yi−(de+1)τ − yiNN−(de+1)τ |

‖ xi − xNNi ‖
(2)



Figure 3: Ratio of false nearest neighbors in the key-blow RTI
dataset as the embedding dimension is increased

A pair of points are FNN if R ≥ RT , where RT is a pre-
defined threshold. Generally, the embedding dimension can
be found by increasing de until most points are not FNN.
[18] suggest using RT = 15, although this value depends
on the data available and is ultimately chosen at the discre-
tion of the practitioner.

Using a value of RT = 15, the embedding dimension
is found for the key-blow RTI dataset. With the time lag
of τ = 1 found in the previous section, the proportion of
points in each sample for which R ≥ RT is found. The
mean proportion of points for which R ≥ RT over the en-
tire dataset is found by taking taking the average proportion
from each sample, denoted by FNN . The results are shown
in Figure 3.

A reasonable choice for de that results in less than 5%
of points being FNN in each sample is found to be de = 4.
Not much is gained by increasing the embedding dimension
beyond this, so de = 4 is chosen as the embedding dimen-
sion of the key-blow RTI dataset. Note that an embedding
dimension of de = 7 was found on a similar dataset in [11].
Care must be taken in selecting an embedding dimension
which is too high, though. The unnecessary degrees of free-
dom will often end up being filled by noise in the data and
not the dynamics of the system itself.

3.2. Irregular embedding

The need for non-uniform embedding is apparent for
time series with more than one dominant periodicity. A
uniform embedding, as described above, will not be able to
handle situations in which a time series contains both low
and high frequency components. In [5], what’s called an
irregular, or non-uniform, embedding is introduced. This
is one such that the time lag τ is not fixed. Instead, a lag
vector l is used to create the time-delay embedded vectors,

xi = [xi−l1 , xi−l2 , xi−l3 , . . . , xi−lde ]

where 0 ≤ l1 ≤ li < li+1 ≤ lde . The variable time lags
are able to reconstruct systems that operate on multiple time
scales. This allows the dynamics of a system with multiple
periodic components to be captured. Both [18, 5] go into
more detail on irregular embedding.

It can be seen that there is now a combinatoric explosion
with the possibilities of lag vectors. A search algorithm is
needed, guided by a heuristic for how well an irregular em-
bedding allows for reconstruction of system dynamics.

3.2.1 MDL principle

The minimum description length (MDL) principle states
that a model should faithfully describe the data without be-
ing overly complex [3]. In [18], the MDL principle is used
to guide the selection of time lags. For a sequence of n time
delay embedded vectors X, the description length is given
by (3),

DL(X) =
d

2
ln

[
1

d

d∑
i=i

(yi − ȳ)2

]

+ d+DL(d) +
n− d

2
ln

[
1

n− d

n∑
i=d+1

e2i

]
(3)

where y is the mean of the first d terms in the original
time series, d is the maximum embedding lag lde , DL(d)
is the description length of the integer d [16], and ei is the
model prediction error at index i. For sufficiently long time
series, the first three terms in (3) have little effect on the to-
tal description length and DL(X) becomes asymptotically
equivalent to the model prediction error. The model pre-
diction error can be computed by a drop-one-out approach
[18].

3.2.2 Optimal embedding: a greedy approach

A simple greedy algorithm is used to choose an optimal
embedding strategy. As will be seen in the experimental
results, this generally leads to better classification accuracy
than a uniform embedding found by MI and FNN alone.
An embedding window, dw = de × τ , is defined as the
maximum lag to search within. The algorithm is given in
Algorithm 1.

Starting with a single lag of [1] in line 1, a local optimal
choice is made on each iteration by concatenating a new lag
to the lag vector in line 6. Note that in lines 6 and 9, ∪
denotes the concatenation of lag k with lag vector l. The
loop from lines 4-13 steps through each possible lag up to
dw and only keeps the new lag if the description length is
reduced. It is possible for the lag vector to be out of sorted
order, since the inner loop goes from i to dw on each itera-
tion. Although the inner loop may terminate early when a



Algorithm 1 Greedy optimal embedding strategy
INPUT N one-dimensional time series, {yj}
OUTPUT embedding strategy l

1: l := [1]
2: mdl :=∞
3: dl := 1

N

∑N
i=0DL(yi, l)

4: for i in range(2, dw) do
5: for k in range(i, dw), not in l do
6: dl := 1

N

∑N
j=0DL(yj , l ∪ [k])

7: if dl < mdl then
8: mdl := dl
9: l := l ∪ [k]

10: break
11: end if
12: end for
13: end for

(a) Uniform embedding (b) Irregular embedding

Figure 4: Key-blow RTI sample with uniform embedding deter-
mined by MI and FNN and irregular embedding determined by
MDL

new MDL is found, the algorithm terminates only after the
outer loop has finished.

To see the effects of an irregular embedding chosen
by MDL versus a uniform embedding determined by MI
and FNN, consider an illustrative example. A single ran-
domly chosen sample from the key-blow RTI dataset is
uniformly embedded with de = 4 and τ = 1, as deter-
mined in the previous sections. This is shown in Figure 4a.
The same sample is embedded with the optimal lag vector
for the key-blow RTI dataset, as determined by Algorithm
1, and is shown in Figure 4b. An embedding window of
dw = de × τ = 4 is used. In each figure, two dimensions
are selected at random for visualization.

A quick visual analysis shows that an attractor appears
to emerge in the irregularly-embedded sample, whereas the
uniformly-embedded sample lacks a richer structure. The
optimal lag vector used to embed the sample in Figure 4b
is l = [1, 2]. In this case, the lag vector is equivalent to a

uniform embedding with de = 2 and τ = 1. In general,
the embeddings found by the MDL principle exhibit better
dynamics than uniform embedding, and the superiority of
MDL as a heuristic for embedding parameters will be em-
pirically shown in the experimental results.

4. Multivariate Wald-Wolfowitz Test
The Wald-Wolfowitz (WW) test, originally proposed by

[21], is a nonparametric test to determine whether two sam-
ples come from the same distribution. The multivariate WW
test [2] is a generalization of the WW test that is able to
make this determination for samples coming from distribu-
tions of any dimension.

The test works as follows. Consider the set of vectors
from two time delay embedded samples with embedding
dimension de. Take the embedded vectors from both sam-
ples and construct the minimum spanning tree (MST) over
all observations in Rde . A run is a segment of the tree that
traverses vectors from only one sample. Runs are separated
by edges which connect nodes (i.e. embedded vectors) from
different samples. In the case that both samples came from
the same distribution, the branches of the tree will likely
encounter vectors from each sample, resulting in a large
number of runs. If the observations came from different
distributions, then the branches will traverse the vectors of
one sample and then the other sample, resulting in relatively
few runs.

The number of runs is used in the WW statistic to deter-
mine whether the samples originated from the same distri-
bution. More precisely, the WW statistic and the expected
number of runs are given by (5) and (4), respectively, where
m and n are the number of vectors in each sample and
N = m+ n.

E(R) =
2mn

N
+ 1 (4)

W =
R− 2mn

N − 1(
2mn(2mn−N)
N2(N−1)

) 1
2

(5)

It has been shown that E(R) has a standard normal dis-
tribution [2].

4.1. Optimizing the Wald-Wolfowitz Test

Since the WW statistic relies on construction the MST
over both samples, it can be show that this function is
O(N3). A simple assumption can dramatically reduce the
complexity of this function, making it practical to compare
large samples.

Consider only the distances to the nearest k neighbors
of each vector in the embedded samples. This can effi-
ciently be computed and represented as a sparse matrix with



Figure 5: Difference between MST and AMST in computing W

non-zero elements containing the Euclidean distances be-
tween neighboring points, as opposed to the full distance
matrix needed to compute the true MST. Construct the ap-
proximate minimum spanning tree (AMST) using the sparse
matrix that contains distances to the k-nearest neighbors of
each vector. The approximate multivariate WW (AMWW)
statistic can be computed from the AMST. The cost is then
only O(Nk log(Nk)). Note that for k = N − 1, the true
MST is given.

Because a sparse distance matrix is used to construct the
AMST, distances of zero are ignored (i.e. zero distances
indicate no edge between nodes in the distance graph). To
avoid the occlusion of points lying directly on top of each
other, a small Gaussian noise is added to each dimension of
the embedded vectors before theN×k distances are found.

For most time series, the AMST is close to the MST
and has a negligible effect on W . This is shown with syn-
thetic and experimental data. Let W (k) denote the AMWW
similarity obtained with the AMST for k neighbors. With
a uniform embedding of de = 4 and τ = 1 (derived in
Section 3), the WW test is applied to 1000 random pairs
of samples in the key-blow RTI dataset. The mean dif-
ference ∆W (k) = 1

1000

∑1000
i=0 |Wi − W

(k)
i | is taken for

1 ≤ k ≤ kmax over all of the samples, where Wi is the
true WW statistic for sample i. This is performed for the
within-class and between-class samples separately. In addi-
tion to this, 1000 pairs of synthetic samples uniformly dis-
tributed in the unit hypercube of R4 are generated, with n
and m ranging between 102 to 103. The results are shown
in Figure 5.

The difference quickly drops off, showing that the exper-
imental data is well behaved and the AMWW gives a good
approximation to the true WW statistic. With large enough
k, there is no significant difference between W and W (k).
For the rest of the paper, the AMWW statistic with a value
of k = 10 is used and W denotes W (10)

5. Identification and verification methodology
The methodology for identification and classification are

as follows. First all of the samples are embedded with either
a uniform or irregular lag vector. Next, W is found between
the unknown sample and every enrolled sample. The mean
similarity W c is taken between the unknown sample and
each class c. For identification, the class which maximizes
W c is chosen as the label for the unknown sample. In this
sense, the WW statistic acts as a distance measure in a kNN
classifier with k = 1.

Authenticating an unknown sample proceeds similar to
classifying an unknown sample, with authentication deci-
sions made by a global threshold. After W c has been found
for each class in the training dataset, a normalized linear
weight is assigned to each class based on its similarity to
the unknown sample. The weight of the claimed identity c
is then compared to a global threshold to make an authenti-
cation decision.

Consider a simple example. Suppose there are 10 classes
in the training dataset. W c is found between the query sam-
ple with claimed identity I and each class c in the labeled
data. The similarity measures are sorted in decreasing or-
der, i.e with the most similar class first. A normalized linear
weight is assigned to each class based on its position in the
sorted list. The first sample gets 10

10 = 1, the second sample
9
10 = 0.9, and so on, with the last sample having a weight
of 1

10 = 0.1. An authentication is performed by checking
whether the normalized linear weight of W I is above some
threshold wthresh, where 0 ≤ wthresh ≤ 1. The false ac-
ceptance rate (FAR) and false rejection rate (FRR) are deter-
mined by adjusting the threshold from 0 to 1. The receiver
operating characteristic (ROC) curve is the tradeoff between
FAR and FRR, determined by the parameter wthresh.

For both classification and authentication results, a
leave-one-out cross validation (LOOCV) is used. Classi-
fication accuracy is reported as the percentage of correctly
classified samples (ACC1). Authentication accuracy is re-
ported as the equal error rate (EER) on the ROC curve. For
n users with m samples, there n2×m authentications, with
n×m positive authentications and n(n− 1)×m negative
authentications. The classification and authentication algo-
rithms are intentionally kept simple since the effect of em-
beddings and viability of other RTI sources are the primary
focus of the paper, not maximizing classification accuracy.

6. Experimental results
The key-blow RTI dataset used in this paper consists of

the labeled samples provided in the 2014 RTI contest, one
of the official 2014 IJCB competitions. Each time series in
the dataset contains 129 time intervals from 130 key-blow
events (i.e. repeatedly hitting a single key 130 times). There
are a total of 60 users and 7 samples per user in the dataset.



Table 1: RTI dataset results

Embedding ACC1(%) EER(%)

[11] Uniform de = 7, τ = 1 NA 19.80
[11] Uniform de = 4, τ = 3 NA 14.51

Uniform de = 7, τ = 1 38.3 15.4
Uniform de = 4, τ = 3 31.9 16.2

Optimal uniform de = 4, τ = 1 41.4 14.9
Optimal irregular l = [1, 2] 44.1 14.0

Each user provided samples on 5 separate days.

6.1. Uniform vs non-uniform embedding

Classification and authentication accuracies were ob-
tained for both uniform and irregular embeddings of the
key-blow RTI dataset. Uniform and irregular embedding
parameters were determined in 3.1 and 3.2. Results for
de = 4, τ = 3 and de = 7, τ = 1 are also shown for
comparison with the results in [11], which utilized a simi-
lar key-blow RTI dataset of 128-blow samples and 40 users
with 10 samples per user. The classification and authentica-
tion results are summarized in Table 1.

The EERs shown in Table 1 from [11] were found by
a comparable classifier that used a global thresholding
scheme similar to the one presented in Section 5. This was
not the best performance achieved by [11], as more sophis-
ticated classification algorithms were used to obtain lower
error rates.

6.2. Higher derivatives

The RTI can be thought of as the first derivative of a
timestamp sequence, while higher derivatives of the origi-
nal time series may also yield useful information. The same
methods described can be used on each of several deriva-
tives of a single time series.

A summation rule is used as a simple way of combining
similarity scores from multiple classifiers. Summing classi-
fier outputs can be particularly effective if independence is
assumed between classifier scores [10]. With the lag vector
l = [1, 2], the W scores from the first derivative (i.e. the
RTI) and second derivative are added together before mak-
ing a classification or authentication decision. In this way, a
separate score is obtained from each derivative time series,
and a single final score is achieved for the sample in ques-
tion. This approach led to the best results on the key-blow
RTI dataset, with an EER of 12.6% and ACC1 of 48.1%.

6.3. Additional results

Several publicly available datasets are considered as 1-
D behavioral biometrics in addition to the key-blow RTI
dataset. In the following experiments, only the event times-
tamps in each dataset are used. The size of each dataset is

reduced to match the size of the key-blow RTI dataset. Each
sample is limited to 130 events, with 7 samples per user and
60 users, unless otherwise noted.

The CMU keystroke password benchmark dataset [9]
contains the keystroke timings of 51 users entering an 11-
character password. Each sample consists of the key press
and release timestamps, for a total of 22 events (this is the
only dataset where each sample contained less than 130
events). Thus, each sample as a RTI contains 21 time in-
tervals. With 400 samples per user in the original dataset, a
subset of 7 randomly-selected samples per user were chosen
to match the size of other datasets used.

A mouse motion dataset is used, which contains mouse
motion events from 58 students taking online exams over
a semester [13]. Samples were collected on mostly homo-
geneous hardware and each event is the motion delta gen-
erated by the movement of a standard desktop mouse. Al-
though the motion deltas, or alternatively the screen coor-
dinates, may contain valuable information, only the event
timestamps are considered in the spirit of analyzing 1-D be-
havioral biometrics. Again, samples were limited to 130
events and 7 samples per user.

A free-text keystroke dataset contains responses from
students answering open-ended questions [20]. Similar to
the password dataset, an event could be either the press or
release of a key. A subset of this dataset was used, which
contained 60 randomly-selected users and 7 randomly se-
lected samples per user. Samples were limited to 130
events, equal in size to the key-blow RTI dataset.

Finally, the web history database provided by [7] con-
tains the web page visit times of 454 users. The timestamp,
anonymized web page id, visit type, and previous visit loca-
tion is given for each record. For a comparative study, a sub-
set of the data was used. The reduced web history dataset
contained 60 randomly selected users with 7 sessions, lim-
iting each session to 130 web page visits. Only the event
timestamps from each sample were used for classification
and authentication.

The classification and authentication results of all 5
datasets are shown in Table 2. The mean event frequency
of each dataset is also shown for a rough placement in
Newell’s Time Scale. Web history clearly falls into the ra-
tional or social band, while password, mouse, keystroke,
and key-blow are in the cognitive band. The irregular em-
bedding for each dataset was determined by the methods
described in 3.2, with dw = de × τ , where de and τ were
found by the methods in 3.1.

7. Conclusions
For the key-blow RTI dataset, the MDL principle served

as a better heuristic for choosing embedding parameters
than MI and FNN. Lower error rates are seen when an irreg-
ular lag vector found by a greedy search algorithm is used



Table 2: Additional datasets results

Dataset Freq. (Hz) Embed. ACC1(%) EER(%)

Pass. 8.5 [1, 2] 33.3 18.3
Mouse 9.0 [1, 2, 3] 34.5 17.1
Keyst. 4.2 [1, 2] 43.1 12.7

Key-blow 3.4 [1, 2] 44.1 14.0
Web 6.8× 10−5 [1, . . . , 9] 16.2 32.8

to embed the samples before applying the non-parametric
Wald-Wolfowitz test. Using an approximation to the MST
in the WW statistic also significantly decreased the cost of
comparing samples with no apparent loss of accuracy.

Choosing a heuristic for estimating time-delay embed-
ding parameters is an important consideration. MDL natu-
rally leads to a model which is descriptive for the dataset in
question. Whether or not this is superior to a discriminative
heuristic is a problem left for future work. Additionally, it
may be possible to increase classification and authentication
accuracies by using transformations of the original time se-
ries, such as taking higher derivatives, although this area is
relatively unexplored. The methods described can be uti-
lized on multivariate time series by simply summing the W
scores for each component (as described in 6.2). This tech-
nique was employed by the author in the Second Eye Move-
ments Verification and Identification Competition (EMVIC)
[6], to place 1st with a classification accuracy of 39.6%.
Derivatives of the horizontal and vertical positions of eye
movement coordinates were be taken with W computed for
each series.

Finally, with anonymity becoming a valid concern, this
work has some interesting applications due to the very few
and general assumptions that are made: all that is required
is the timestamp of a recurring event. That event could be
a keystroke, web page visit, or possibly timestamps from
a phone log or encrypted network traffic, although these
applications are left for further investigation. Over time,
simply the observation of a recurring event at given inter-
vals may be enough to identity or authenticate an individual,
even if no other information is leaked.
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